

Markscheme

November 2018

Chemistry

Standard level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

-3-

	Question	Answers	Notes	Total
1.	а	NO₂/NO/NO _x /HNO₃/gas is poisonous/toxic/irritant √	Accept formula or name. Accept "HNO ₃ is corrosive" OR "poisonous/toxic gases produced". Accept "reaction is harmful/hazardous".	1
1.	b	Slope (gradient): 40 ✓	Accept any correct relationship for slope such as $\frac{1.00}{0.025}$.	
		Equation: absorbance = $40 \times$ concentration OR y = 40x	Award [2] if equation in M2 is correct.	2
1.	С	dilute 1.00 cm³ «of the standard solution with water» to 100 cm³ OR dilute sample of standard solution «with water» 100 times ✓ «graduated/volumetric» pipette/pipet ✓ volumetric flask ✓	Accept any 1:100 ratio for M1. Accept "mix 1 cm³ of the standard solution with 99 cm³ of water" for M1. Do not accept "add 100 cm³ of water to 1.00 cm³ of standard solution" for M1. Accept "burette/buret" for M2. Accept "graduated/measuring flask" for M3 but not "graduated/measuring cylinder" or "conical/Erlenmeyer flask".	3

-4-

С	Question		Answers	Notes	Total
1.	е	i	«since it is greater than 60%» it will reduce the presence of bacteria «on door handles» ✓		1
1.	е	ii	resistant to corrosion/oxidation/rusting OR low friction surface «so ideal for connected moving components» ✓	Accept "hard/durable", "whigh tensile» strength", "unreactive", "malleable" or any reference to the appearance/colour of brass (eg "gold-like", "looks nice" etc.). Do not accept irrelevant properties, such as "high melting/boiling point", "non-magnetic", "good heat/electrical conductor", "low volatility", etc. Do not accept "ductile".	1
1.	f	i	$2I^-(aq) + 2Cu^{2+}(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2CuI(s) + S_4O_6^{2-}(aq)$ correct reactants and products \checkmark balanced equation \checkmark	M2 can only be awarded if M1 is correct.	2
1.	f	ii	precipitate/copper(I) iodide/CuI makes colour change difficult to see $\begin{tabular}{l} \textbf{\textit{OR}} \\ \textbf{\textit{release of I_2/iodine from starch-I_2 complex is slow so titration must be done slowly \checkmark} \end{tabular}$		1

Section B

-6-

Option A — Materials

Question		Answers	Notes	Total
2.	а	$\Delta \chi = 0.7$ AND average $\chi = 1.7$ √	Accept "EN" for "χ".	
		bonding between metallic and ionic OR more than one type of bonding present OR bond type difficult to determine as close to several regions/several types/named bonding types «eg ionic and covalent etc.» OR bond is mostly covalent «based on % covalent scale on diagram» OR	Accept "bond is ionic but close to several regions/several types/other named bonding type(s) (eg covalent, metallic and covalent etc.)". Do not accept just "bond is ionic".	2
		bond has « $\frac{0.7}{3.2}$ × 100 =» 22% ionic character √	Accept any value for % ionic character in range 15–24% or % covalent character in range 76–85%.	

-7-

	Questi	ion	Answers	Notes	Total
2.	С	i	pores/cavities/channels/holes/cage-like structures «in zeolites» have specific shape/size ✓ only reactants «with appropriate size/geometry» fit inside/go through/are activated/can react ✓		2
2.	С	ii	does not require corrosive acid/«concentrated» sulfuric acid/H₂SO₄ OR zeolite can be recycled «more easily» OR product can be «more» easily separated from a zeolite «than from sulfuric acid» OR minimal/less impact on environment OR synthesis of specific isomers as products ✓		1
2.	d		Name and reason: PET/PETE AND peak for C=O «at 1700–1750 cm ⁻¹ » ✓ RIC: 1 ✓	Accept "PET/PETE AND peak for C-O «at 1050–1410 cm ⁻¹ »" for M1. Accept "PET/PETE AND peak(s) for COO" for M1. Accept name or abbreviation for polymer. No ECF for M2.	2

C	uestion	Answers	Notes	Total
3.	а	positive ions/cations/Pb²+ OR free electrons ✓	Accept "ions" OR "charged species/particle".	1
3.	b	[Pb ²⁺] = $0.50 \times 10^{-6}/5.0 \times 10^{-7}$ «g dm ⁻³ » \checkmark [Pb ²⁺] «= $\frac{0.50 \times 10^{-6} \text{ g dm}^{-3}}{207.20 \text{ g mol}^{-1}}$ » = 2.4×10^{-9} «mol dm ⁻³ » \checkmark	Award [2] for correct final answer.	2
3.	С	«Faraday's constant, $F = 9.65 \times 10^4 \mathrm{C}$ mol ⁻¹ and $1 \mathrm{A} = 1 \mathrm{C}$ s ⁻¹ » $Q \text{w} = 0.0500 \mathrm{mol} \times 2 \times 96500 \mathrm{C}$ mol ⁻¹ » = $9650 \mathrm{w} \text{C}$ » \checkmark $t \text{w} = \frac{Q}{I} = \frac{9650 \mathrm{C}}{1.34 \mathrm{C} \mathrm{s}^{-1}} \approx 7200 \mathrm{s}$ so $\frac{7200 \mathrm{s}}{60 \times 60 \mathrm{s} \mathrm{h}^{-1}}$ » = $2.00 \mathrm{w}$ hours» \checkmark	Award [2] for correct final answer.	2

-10-

Option B — Biochemistry

Q	Question		Answers	Notes	Total
5.	а		catabolism «of food/nutrients» OR «cellular» respiration ✓	Accept "ATP" but not "burning of food/nutrients".	1
5.	b		not enough sunlight/UV light «for synthesis of vitamin D in the skin» ✔		1
5.	С		cannot be metabolized/broken down OR not biodegradable OR accumulates in lipid/fat tissues ✓ increased concentration as one species feeds on another «in the food chain» ✓		2

– 11 –

6.	а		Accept a diagram which shows hydrogen bonding for M1 and which shows the interaction between O of C=O and H of NH groups for M2.	2
			Accept "between amido/amide/ carboxamide" but not "between amino/amine" for M2.	-

C	Questi	on	Answers	Notes	Total
6.	b	i	Enzyme action: Any two of: substrate binds to active site ✓ weakens bonds in substrate ✓ lowers activation energy OR provides alternate pathway ✓ increases rate of reaction OR acts as catalyst ✓ substrate specific ✓ Limitation: Any one of: temperature dependent ✓ pH dependent ✓ can be sensitive to heavy metal ions ✓ sensitive to denaturation ✓ can be inhibited ✓ substrate specific ✓	Accept "favourable orientation/conformation of the substrate «enforced by enzyme»" for M1. Do not accept "substrate specific" as both an enzyme action and a limitation.	3 max
6.	b	ii	Any one of: «increase rate of» hydrolyse/break down lipids/oils/fats/proteins ✓ «wash at» lower temperature/consume less energy ✓		1 max

– 12 –

C	Question		Answers	Notes	Total	
7.	а		phosphoric acid ✓ glycerol/propane-1,2,3-triol ✓	Do not accept formulas.	2	
7.	b	i	ALTERNATIVE 1: 4 C=C bonds/4 carbon to carbon double bonds ✓ mass of iodine per mole of acid =	Award [3] for correct final answer.	3	
7.	b	ii	Any two of: «structural» components of cell membranes ✓ energy storage/utilization ✓ «thermal/electrical» insulation ✓ transport «of lipid-soluble molecules» ✓ hormones/chemical messengers ✓	Accept other specific functions, such as "prostaglandin/cytokine/bile acid synthesis", "cell differentiation/growth", "myelination", "storage of vitamins/biomolecules", "signal transmission", "protection/padding of organs", "precursors/starting materials for the biosynthesis of other lipid".	2 max	

_	1	4	_
---	---	---	---

C	Question		Answers	Notes	Total
7.	С		Any one of: atherosclerosis/cholesterol deposition «in artery walls» ✓ heart/cardiovascular disease ✓ stroke ✓	Accept "arteries become blocked/walls become thicker".	1 max

8.	а	«1,4-»glycosidic ✓	Do not accept "glucosidic".	1
8.	b	H and OH are reversed/in different positions on C-4 ✓	C-4 must be specified. Do not penalize if reference is made to H and OH above and below ring/in alpha and beta positions on C-4 incorrectly.	1

Option C — Energy

C	uesti	on	Answers	Notes	Total
9.	а		small/lighter <u>nuclei</u> combine to form larger/heavier <u>nuclei</u> ✓ product has higher binding energy «per nucleon» ✓	Accept binding energy curve with explanation.	2
9.	b	i	converts non-fissile « ²³⁸ U» material into fissile « ²³⁹ Pu» material <i>OR</i> produces more fissile material than it consumes ✓		1
9.	b	ii	239 Pu + 1 n $\rightarrow ^{133}$ Xe + 103 Zr + 41 n \checkmark	Accept equation with correct atomic numbers included. Accept notation for neutrons of "n". Accept a correctly described equation in words.	1
9.	С		ALTERNATIVE 1: « $\frac{240}{30}$ =» 8 $t_{\frac{1}{2}}$ /8 half-lives «required» ✓ % remaining = «0.50 ⁸ × 100 =» 0.39 «%» ✓ ALTERNATIVE 2: $\lambda = \frac{0.693}{30}$ =» 0.023 ✓ % remaining = «100 × e ^{-0.023 × 240} =» 0.39 «%» ✓	Award [2] for correct final answer.	2

– 15 –

Q	uesti	ion	Answers	Notes	Total
10.	а		ALTERNATIVE 1: $2C(s) + 2H_2O(g) \rightarrow CH_4(g) + CO_2(g) \checkmark$ ALTERNATIVE 2: $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \text{ AND } 3H_2(g) + CO(g) \rightarrow CH_4(g) + H_2O(g) \checkmark$	Accept "3C(s) + $2H_2O(g) \rightarrow CH_4(g) + 2CO(g)$ ".	1
10.	b	i	$ \frac{891 \text{ kJ mol}^{-1}}{16.05 \text{ g mol}^{-1}} = 55.5 \text{ kkJ g}^{-1} \text{ w} $	Do not penalize negative sign. Do not accept energy density at STP/ density at STP= $\frac{39.3}{0.707}$ = 55.06 «kJ g ⁻¹ ».	1
10.	b	ii	« 141.6 / 55.5 » hydrogen/H₂ produces 2.6 times/more than twice the energy of methane/CH₄ «per mass/g» OR less mass of hydrogen/H₂ required «to produce same amount of energy» OR hydrogen/H₂ more energy efficient ✓	Accept "hydrogen/H ₂ produces «nearly» three times more energy than methane/CH ₄ «per mass/g»".	1
10.	С		$m_{\text{octane}} \ll 72.0 \text{dm}^3 \times 703 \text{g dm}^{-3} = 50600 \text{wg}/50.6 \text{wkg} \text{\checkmark}$ $m_{\text{carbon dioxide}} \ll \frac{8 \times 44.01}{114.26} \times 50.6 = 156 \text{wkg} \text{\checkmark}$	Award [2] for correct final answer.	2

– 16 **–**

Questio	on	Answers	Notes	Total
11. a		Advantage: renewable «energy source» OR does not produce greenhouse gases OR can be installed «almost» anywhere OR low maintenance costs ✓	Accept "can be used for passive/active heating", "can be converted to electric energy". Accept any specific greenhouse gas name or formula for "greenhouse gases".	
		Disadvantage: widely dispersed/not concentrated «form of energy» OR geography/weather/seasonal dependent OR not available at night OR energy storage is difficult/expensive OR toxic/hazardous materials used in production OR concerns about space/aesthetics/local environment where installed OR need to be «constantly» cleaned ✓	Accept "solar cells require large areas", "solar cell manufacture produces pollution/greenhouse gases", "higher cost of solar cells «compared with traditional sources such as fossil fuels or hydroelectric»".	2

-18-

C	uestion	Answers	Notes	Total
11.	е	$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$	Accept " H_2CO_3 (aq)" for " CO_2 (aq) + H_2O (l)".	
		OR $CO_2(g) \rightleftharpoons CO_2(aq) \text{ AND } CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq) \checkmark$	Equilibrium arrows required for M1. State symbols required for $CO_2(g) \rightleftharpoons CO_2(aq)$	
		002(g) (002(aq) / 1120(t) (11 (aq) / 11003 (aq) (equation only for M1.	2
		«increasing [CO₂(g)]» shifts equilibrium/reaction to right AND pH decreases ✓	Accept "concentration of H*/[H*] increases AND pH decreases" for M2.	

Option D — Medicinal chemistry

C	uestion		Answers		Notes	Total
12.	а		Bond angle			
		β-lactam ring	90° √			
			120°			2
		Expected bond angles	- AND			
			109.5° √		Accept "109°".	
12.	b	«irreversibly» binds/bonds	to enzyme/transpeptidase		Accept "reacts with" for "bonds to" for M1.	
		OR				
		inhibits enzyme/transpeption	dase «in bacteria» that produce	s cell walls	Do not accept "cell membrane" for "cell wall" for M1.	
		OR				
		prevents cross-linking of ba	acterial cell walls √			2
		cells absorb water AND bu	ırst		Accept "cells burst due to osmotic pressure" for M2.	
		OR			Accept "bacteria" for "cells" for M2.	
		cells cannot reproduce ✓				

- 20 -

-21-

-22-

C	uestion	Answers	Notes	Total
14.	а	ALTERNATIVE 1: Using: $pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$ $pK_a = 10.32 \checkmark$ $pH = \ll 10.32 + log\left(\frac{0.0200}{0.0100}\right) = \gg 10.62 \checkmark$ ALTERNATIVE 2: $[H^+] \ll = K_a \times \left(\frac{0.0100}{0.0200}\right) \gg = 2.4 \times 10^{-11} \checkmark$ $pH = 10.62 \checkmark$	Award [2] for correct final answer. Accept answers for M2 between 10.6 and 10.7. Award [1 max] for pH = 10.02.	2
14.	b	$\begin{aligned} &CaCO_3(s) + 2HCl\left(aq\right) \to CaCl_2\left(aq\right) + H_2O\left(l\right) + CO_2\left(g\right) \\ &\boldsymbol{\mathit{OR}} \\ &CaCO_3(s) + 2H^+(aq) \to Ca^{2+}\left(aq\right) + H_2O\left(l\right) + CO_2\left(g\right) \checkmark \end{aligned}$		1
14.	С	«back» titration OR thermal decomposition OR atomic absorption/AA ✓	Accept "gravimetric analysis". Do not accept description of a technique without proper term given for the technique.	1

Q	uestion	Answers	Notes	Total
15.	a	bacteria perform living functions «on their own and viruses do not without host cell» OR bacteria have cell walls «and viruses do not» OR bacteria do not have a capsid «and viruses do» OR bacteria larger than viruses OR bacteria reproduce by fission/budding «and viruses reproduce within a living host cell» OR bacteria affected by antibiotics «while viruses are not» ✓	Accept "bacteria have flagella/ cytoplasm/ribosome «and virus can have head/protein tail/double stranded RNA/single stranded DNA»", "asexual reproduction for bacteria", other specific structural differences between bacteria and viruses, and examples of living functions that bacteria perform (such as excretion, reproduction etc.) that viruses do not.	1
15.	b	Any two of: prevents virus attaching to host cell ✓ alters cell's genetic material/DNA «so that virus cannot use it to multiply» ✓ blocks enzyme activity in the host cell «so that virus cannot use it to multiply» ✓ prevents removal of protein coat/capsid ✓ prevents injection of viral DNA/RNA into cell ✓ prevents release of «replicated» viruses from host cell ✓	Accept "prevents synthesis of virus by host cell". Accept "alters RNA/DNA/genetic material of virus". Do not accept just "mimics nucleotides".	2 max

Question	Answers	Notes	Total
16.	Any two of:		
	«weak» C–Cl bonds break/produce radicals ✓		
	contribute to ozone depletion ✓		
	contribute to «photochemical» smog √		
	cause cancers ✓		2 max
	damage respiratory system √		
	cause organ failure √		
	produce toxic chemicals/phosgene/dioxins ✓	Accept "chlorinated solvents are toxic".	